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Adversarial examples crafted by adding or dropping information
are both able to deceive DNNs with incorrect prediction of image
contents, however, both approaches have their limitations.

» The overview architecture of our proposed Adversarial Attack using
Invertible Neural Networks (AdvINN) method.

v The Invertible Information Exchange Module, which is with the
Information  preservation property, non-linearly exchanges
Information between the input benign image and the target image.
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v The methods based on adding adversarial perturbations may
lead to perceptible noise patterns and noticeable increase of
Image storage size.
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. o . . v The Target Image Learning Module is used to update the
v The method of dropping existing information has limited learnable target image x, .,
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performance on targeted attacks. T _ _ \
v The quantization module is set to round the pixel values of the

generated adversarial examples x4, t0 be Integers and within the
range of [0, 255].
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» Target Image Selection and Learning

v' Highest Confidence Target Image (HCT): select the image with the highest
confidence In each class as the target image.

v UAP as Target Image (UAP):
perturbation as target images.
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We propose a novel Adversarial attack method using Invertible utilize the targeted universal adversarial

Neural Networks, termed AdvINN, by leveraging the
Information preservation property of Invertible Neural Networks
(INNs) to achieve simultaneously adding extra information and

dropping existing details.
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v' Classifier Guided Target Image (CGT): the target image is set to be a learnable
variable which is initialized with a constant image (i.e., all pixels are set to 0.5)
and then updated according to the gradient from the attacking classifier. /
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Experiments and Visualization Results Contributions
Table 1. Accuracy and evaluation metrics on different methods. oS - NPR v We propose a novel Adversarial attack method using Invertible
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